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Abstract This paper is concerned with a numerical study on evolution of a deformed bubble and
propagation of the fields around the bubble. The model uses a numerical procedure with the
direct-predictor method and the alternating dependent variables (ADV) skill developed by Li and
Yan. The aim of this paper is to study the characteristics of interfacial transport for a deformed
inviscid bubble rising in a quiescent hot or bi-solution liquid. The effects of the bubble deformation
on temperature and concentration fields are calculated and simulated. The results demonstrate
that the current numerical procedure is effective for solving such unsteady deformation problems
of bubble accompanied with heat and mass transfer.
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Nomenclature
Ab ¼ constant coefficient
C ¼ concentration
CD ¼ drag coefficient
de ¼ bubble equivalent diameter (m)
Eö ¼ Eötvös number ¼ Drgd2e=s

� �
Fx ¼ drag force in the x-direction
J ¼ Jacobian transformation number
Mo ¼ Morton number ð¼ gm 4=rs 3Þ
p ¼ pressure (Pa)
r ¼ coordinate (m)
Re ¼ Reynolds number ð¼ rVTde=mÞ
S ¼ source term in general governing

equation
t ¼ dimensionless time ð¼ t0UT=deÞ
t0 ¼ realistic time (s)

T ¼ temperature (K)
u ¼ Cartesian velocity component in the

x-direction (m s21)
�uT ¼ dimensionless terminal velocity

( ¼ uT/UT)
n ¼ Cartesian velocity component in the

r-direction (m s21)
U ¼ contravariant velocity component
V ¼ contravariant velocity component

and bubble volume (m3)
UT ¼ bubble terminal rising velocity

(m s21)
We ¼ Weber number ð¼ rUTUTde=sÞ
x ¼ coordinate (m)
a ¼ covariant metric tensor
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Introduction
A bubble’s deformation is an important behaviour when the bubble rises freely
in a quiescent liquid. This is because the deformation has significant effects not
only on the flow around the bubble, but also on other transport characteristics.
For example, when a deformable bubble rises in a quiescent hot or bi-solution
liquid, heat and mass will transfer across the interface. The rate of
transportation is dependent on the temperature and concentration gradients
formed by both diffusion and convection, which are induced by the flow field.
Therefore, the deformation of a rising gas bubble is a result of interactions of
interfacial stresses, including the surface tension forces, hydrostatic and
dynamic pressures, and viscous forces. The shape of the bubble is dependent
on the characteristics of the flow around it; meanwhile, the characteristics of
flow actually results from the bubble shape. In fact, these interactions
constitute a complicated and intrinsic moving boundary problem in
thermo-fluid dynamics; on this, the movement of a gas-liquid interface must
be calculated as a part of the solution and the grid used has to move with the
interface. In an earlier work, the authors have developed a direct-predictor
method (Li and Yan, 2002a) with an alternating dependent variables (ADV)
skill (Li and Yan, 2002b) to simulate the problem of a steadily deforming
bubble. Complete solutions including the steady terminal bubble shapes have
been obtained. However, for the problem of time-dependent bubble
deformation, when the grid points move to new positions, the accumulation
of the artificial mass source does not occur during the solution for the flow field.
Because there is no time derivation term in all the governing equations, the
variable values at the last iteration step do not influence those at the current
step. In addition, if the flow is considered as unsteady, the volume of each cell in
the computational domain changes with grid movement; this will result in the
accumulation of the artificial mass source with time marching. As pointed out
by Dermirdzic and Peric (1988, 1990), mass conservation must be obtained by

b ¼ covariant metric tensor or constant
coefficient

d ¼ difference operator
f ¼ general dependent variable
g ¼ covariant metric tensor
h ¼ coordinate in computational

space
m ¼ dynamic viscosity (kgm21 s21)
r ¼ density (kgm23)
s ¼ surface tension coefficient (Nm21)
t ¼ shear stress
j ¼ coordinate in computational space
D ¼ gradient operator
G ¼ diffusion coefficient
R ¼ ratio of bubble volume at the

present step to the last

Subscripts
b ¼ values at the interface
b2 1 ¼ values on the point one grid away

from the interface
e ¼ equivalent
1 ¼ value at the reference point
o ¼ values of the gas inside bubble
t ¼ tangential direction

Superscripts
old ¼ values at the last iteration step
new ¼ values at the present iteration step
n ¼ values at the last iteration step
p ¼ values at the predictor phase
nþ 1 ¼ values at the present iteration step
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enforcing the so-called space conservation law (SCL), which will be discussed
later.

This paper is concerned with the development of a method to solve the
unsteady free-boundary problems in thermo-fluid dynamics. Although the
solution approach for a steady free-boundary problem has been developed by
Li and Yan (2002a,b), an unsteady technique is essential to understand certain
types of fluid mechanics problem, such as the effect of unsteady deformation of
a bubble on temperature and concentration fields, and on the evolution of
bubble shape; it may also play an important role in understanding the
limitations encountered by steady algorithms in obtaining solutions for some
parameter values. For example, in the unresolved problem of a rising bubble in
a quiescent liquid, a transient approach may either lead to a stable steady
solution on a new branch or reveal the lack of steady solutions. In this paper,
the general features of a new numerical algorithm for transient, free-boundary
problems will be introduced, which will then be applied to the specific problem
of unsteady deformation of a bubble in a viscous incompressible Newtonian
fluid that undergoes an external flow.

The existing literature on numerical methods for unsteady free-boundary
problems is quite limited. However, two classes of solution methods can be
identified. One is the so-called boundary-integral technique, which has been
applied to a wide range of problems with an initial shape. Although it is
extremely powerful when applied, the method is currently restricted to the
limiting cases of either zero Reynolds number or for an inviscid irrotational
flow; this indeed reduces its general usefulness. The other, a more general class
of solution methods, is a full numerical technique that is suitable when the
governing equations are non-linear. In this class, three distinct methods are
summarised.

The first is the marker and cell (MAC) method, which employs the
Eulerian mesh of computational cells and finite difference expressions to
approximate the governing equations, and in addition, a set of marker
particles that moves with the fluid to track the position of free surface is
used. This method has been successfully applied to very largely deformed
free surfaces, but usually with surface tension neglected. However, the
intrinsic difficulty is that the surface position does not generally coincide
with the given mesh points. Thus, a special kind of interpolation technique
must be used to apply the boundary conditions.

The second method is a finite-element method, which has been used to
obtain most of the existing solutions of unsteady free-surface problems. In this,
the strategy for deforming the elements is the most critical factor in successful
applications. Usually, for either a Lagrangian approach or a flow-independent
scheme, the element’s deformation is only determined by the boundary shape at
each instant. Therefore, the motion of the element nodes is independent of the
velocity field of fluid.
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Moreover, on the basis of Ryskin and Leal’s (1984a-c) steady method, Kang
and Leal (1987, 1989) proposed a third method suitable for unsteady
free-boundary flow problems. In their method, a finite difference method was
used to discrete the vorticity-stream function of Navier-Stokes equations. The
new interface points were modified by using the imbalance normal stress and
combining it with an orthogonal mapping technique. This method was used to
simulate gas bubble deformation in an uni-axial straining flow and biaxial
straining flow (Kang and Leal, 1989). Takagi et al. (1997) have employed the
orthogonal boundary fitted coordinate (BFC) to solve the full Navier-Stokes
equations. However, in these researches, the only focus was on the fluid
dynamics, the heat and mass transfer accompanying bubble deformation have
not been considered in the open literature.

In this paper, an unsteady bubble deformation in external flow is
calculated by using the SIMPLE method; a non-orthogonal BFC is used to
match the interface of a deformed bubble; and the ADV skill (Li and Yan,
2002b) is employed to treat the slip-boundary conditions to circumvent the
numerical instability resulted from the zero and infinite slope of the bubble
profile. In addition, propagation of the temperature and concentration fields
is simulated in order to understand the evolution of the bubble
deformation.

Problem formulation
Assumptions
On the basis of Plesset and Zwick’s (1954) and Ryskin and Leal’s (1984a-c)
studies, the following assumptions have been made:

(1) the gas-liquid interface is completely free of surfactant;

(2) both the boundary geometry and flow fields are axisymmetric;

(3) the bulk liquid is an incompressible Newtonian fluid, its density and
viscosity being sufficiently large when compared with those of a gas;
and

(4) the dynamic pressure and stresses at the interface are negligible on the
gas side compared with those on the liquid side.

Coordinate system and grid generation
In this paper, non-orthogonal BFC of (j, h, u) are employed, where u is the
azimuthal angle, measured about the axis of symmetry. With the assumption of
axisymmetry, these non-orthogonal coordinates can be connected with
common cylindrical coordinates (x, r, u) as shown in Figure 1. The
corresponding grid is generated using the numerical grid generation technique
developed by Thompson et al. (1974). In the present study, the technique for
generating a transformed coordinate system as solutions of an elliptic
differential system in the physical space is applied to a single-connected region
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with arbitrarily shaped bubbles. The point (x, r) in the physical space satisfies
the following elliptic equations in the non-orthogonal BFC system (j, h)

axjj 2 2bxjh þ gxhh þ J 2ðPxj þ QxhÞ ¼ 0; ð1Þ

arjj 2 2brjh þ grhh þ J 2ðPrj þ QrhÞ ¼ 0 ð2Þ

where a, b and g are metric tensors defined as follows:

a ¼ x2h þ r 2h; ð3Þ

b ¼ xjxh þ rj rh; ð4Þ

g ¼ x2j þ r 2j ; ð5Þ

where J is the transformation Jacobian number given by

J ¼ xj rh 2 xhrj: ð6Þ

The mathematical problem defined by equations (1)-(6) is subject to appropriate
boundary conditions and constitutes the boundary value problem of numerical
grid generation. In the present calculations, grid control functions P and Q in
equations (1) and (2) are determined by the method described by Thomas and
Middelcoff (1980). This method has advantages that the grid generated is
normal to the physical boundary and the grid concentration in the
computational domain is easy to control. With respect to the (j, h) system,
the mapping is always defined in such a way that the solution domain is a unit
square defined by 0 # j # 1; and 0 # h # 1:

The grid of non-orthogonal BFCs at the physical space is shown in Figure 2,
where the curvilinear line for h ¼ 0 fits the gas-liquid interface.

Figure 1.
Bubble shape and
cylindrical coordinate
system
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Governing equations and their discretisation
By earlier assumptions, determination of the flow with heat and mass transfer
around a rising freely bubble needs the solution of the unsteady axisymmetric
Navier-Stokes, energy and species continuity equations. Unlike most of the
earlier works which addressed flow past a sphere and solved the Navier-Stokes
equations by the vorticity and stream-function approach in orthogonal
curvilinear BFCs, the formulation adopted in the present study is based on the
primitive velocity-pressure variables in non-orthogonal BFCs. The equations
developed are written in general non-orthogonal (as opposed to orthogonal)
coordinates. These choices give much flexibility and allow the code to treat
flow and heat transfer problems in an arbitrary computational domain with
complicated geometry boundaries. In a non-orthogonal coordinate, there are
several options for grid arrangement and the choice of dependent variables for
momentum equations. The simplest of these is a straightforward extension of
the formulation in Cartesian coordinate system (x, r). This involves staggering
along the coordinate directions with one Cartesian velocity component stored at
each face of the control-volume (Shyy et al., 1996). In this paper, the Cartesian
velocity components (u, v) are employed as dependent variables to predict flow
and heat and mass transfer at the interface. In the investigation of
time-dependent bubble deformation, the moving boundary must be solved as
part of the solution for continuity and momentum equations. The velocities in
the convection term in governing equations must be replaced by relative
velocities Ur and Vr. The conservation equations for a general dependent
variable f in a non-orthogonal coordinate system (j, h) is then rewritten in the
following general form:

Figure 2.
Non-orthogonal BFC and

grid generation

Temperature and
concentration

fields

945



›rJf

›t
þ

›

›j
r rU rf2

G

J
a
›f

›j
2 b

›f

›h

� �� �

þ
›

›h
r rV rf2

G

J
2b

›f

›j
þ g

›f

›h

� �� �
¼ rJSðj;hÞ

ð7Þ

where

U r ¼ ðu2 ugÞ
›r

›h
2 ðv2 vgÞ

›x

›h
; ð8Þ

V r ¼ ðv2 vgÞ
›x

›j
2 ðu2 ugÞ
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whereUr andVr are the contravariant velocity components, S(j, h) is the source
term of f in the (j, h) coordinates, G is diffusion coefficient, which represents
mass coefficient in chemical species equations, dynamic viscosity coefficient in
momentum equations, and thermal conductivity in energy equations,
respectively. The general dependent variable f equals 1, u, n, T and C,
respectively.

The finite-volume method is applied in the discretisation of the governing
equations. With a staggered grid arrangement, scalar quantities are located at
the geometric centre of the control volume; velocity components are displaced
in two coordinate directions, respectively, to lie at the midpoints of the
control-volume faces.

Boundary conditions
According to Wittke and Chao (1967), the behaviour of a gas bubble rising
at a variable velocity in a liquid of an infinite extent is equivalent to that
of a bubble whose centre of mass is at rest while the unbounded liquid
flows downward with a variable velocity, VT, at a large distance away
from it. For this situation, boundary conditions at the inlet of the solution
domain are given as follows:

u ¼ VTðtÞ ð10aÞ

v ¼ 0 at any time ð10bÞ

T ¼ T1; for heat transfer problem; ð10cÞ

C ¼ C1; for mass transfer problem: ð10dÞ
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The boundary conditions at the outlet of the domain are given by zero
normal velocity gradient and zero tangential velocity, and expressed as

›u

›x
¼ 0; ð11aÞ

v ¼ 0; ð11bÞ

›T

›x
¼ 0; ð11cÞ

›C

›x
¼ 0: ð11dÞ

Due to the assumption of axisymmetric flow, symmetric boundary
conditions are given as:

›u

›r
¼ 0; ð12aÞ

v ¼ 0; ð12bÞ

›T

›r
¼ 0; ð12cÞ

›C

›r
¼ 0 ð12dÞ

The temperature and concentration boundary conditions are imposed for
the interface as

u ¼ 0; ð13aÞ

v ¼ 0; ð13bÞ

T ¼ Tb; ð13cÞ

C ¼ Cb: ð13dÞ

As zero mass flux across the interface is assumed in the present study, the
kinematic boundary condition becomes a zero relative normal velocity and
is expressed as:
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ðv2 vgÞxj 2 ðu2 ugÞrjffiffiffi
g

p ¼ 0 ð14Þ

where subscript g stands for interfacial velocity; and the dynamic boundary
conditions are written as:

tt ¼ m xjg
›u

›h
2 ðxjbþ rj J Þ

›u

›j
þ ðxj J 2 rjbÞ

›v

›j
þ rjg

›v

›h

� �
b

¼ 0: ð15Þ

To impose the slip-boundary conditions at the free interface, equations (14)
and (15) need to be first discretised at the nodes of u and v, respectively.
The discretisation employs both central difference and forward difference
schemes. Cartesian velocity u is determined by equation (15), and v is
obtained from equation (14). Thus, the discretised forms are written as:

ub ¼ ub21 þ
dh

gb
J 2

rj

xj
b

� �
b

dv

dj
þ

rj

xj
g

� �
b

dv

dh
2 bþ

rj

xj
J

� �
b

du

dj

� �
ð16Þ

vb ¼ vg þ ðub 2 ugÞ
rj

xj

� �
b

ð17Þ

where subscript b stands for the value at the interface, b2 1 denotes the
values on the point one grid away from the interface, and d is a finite
differential operator; the velocities ub and vb are the Cartesian components
of fluid velocity. The central differencing scheme is employed for the first
derivative terms in the j-direction, while a forward differencing scheme is
only used for the first derivative terms in the h-direction. From equations
(16) and (17) it can be seen that, if the slope of the bubble profile is large,
ð›r=›xÞb ¼ ðrj=xjÞb ¼ 1; a numerical instability is induced. To overcome
this problem, the ADV method (Li and Yan, 2002b) is employed.

Employing the direct-predictor method
To obtain an increasingly improved estimate of a bubble shape, a direct
predictor method (Li and Yan, 2002a) is applied using the following procedures.

(1) To predict the outline of a bubble profile (x p, r p), the following equations
are used:

xp
b ¼ xnb 2 AbDP

ðrjÞbffiffiffiffiffi
gb

p ð18aÞ

r pb ¼ rnb þ AbDP
ðxjÞbffiffiffiffiffi
gb

p ð18bÞ
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where the subscript b represents the values at the interface; Ab is a
constant coefficient based on the maximum imbalance normal force
difference, its value being specified by numerical experiments; the terms
2ðrjÞb=

ffiffiffiffiffi
gb

p
and ðxjÞb=

ffiffiffiffiffi
gb

p
are the direction cosines of the normal

direction of the interface profile; and the last terms are the components of
the normal displacement in the x- and r-direction, respectively. The
normal stress DP in equations (18(a),(b)) has been expressed as (Li and
Yan, 2002a):

DP ¼ p0 2 pþ
2

g J Re
g
›Vr

›h
2 b

›Vr

›j

� �

2
1

We
ffiffiffi
g

p 2
xj rjj 2 rjxjj

g
þ
1

r

� �
: ð19Þ

where the three terms on the right hand side of the equation are,
respectively, the pressure difference between the inside and outside of
the bubble, the difference in normal viscosity stresses, and the difference
in surface tension force.

(2) To get a corrected position xnþ1
b ; r nþ1

b

� 	
in order to reduce the imbalance

in the normal stress:
On the basis of values ðxp

b ; r
p
b Þ; final positions ðxnþ1; r nþ1Þ can be

determined as:

xnþ1
b ¼ Rxp

b ð20aÞ

r nþ1
b ¼ Rr pb ð20bÞ

where

R ¼
�V Old

�V New

� �1
3

ð21Þ

�V ¼

Z 1

0

p r 2
›x

›j
dj ð22Þ

The ratio of the new volume to the old volume of bubble, R, is used
to correct the exact positions with an inner iteration at each time
step.

(3) To repeat procedures (1) and (2) until the imbalance in the normal stress
satisfies the pre-specified tolerance.
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The application of the SCL
To deal with the flow problem with time dependent moving interface,
Dermirdzic and Peric’s (1990) SCL method is employed. By a first-order
integration of the equation, a fully implicit time integration scheme over the
control volume used for mass conservation can be expressed as

ð J 2 J 0ÞrDxDr

Dt
þ ð2ugrh þ vgxhÞerDr 2 ð2ugrh þ vgxhÞwrDr

þ ð2vgxj þ ugrjÞnrDx2 ð2vgxj þ ugrjÞsrDx ¼ 0

ð23Þ

This equation is used to update the Jacobian number to guarantee the basic
requirement for space conservation.

Solution procedure
To simulate deformation of a bubble, a solution of the momentum and
continuity equations is required by using an iteration procedure. Steps in such
a procedure can be summarised as:

(1) assume an initial bubble shape, for example, a spherical bubble, being at
rest in a stagnant liquid;

(2) generate a non-orthogonal grid to match the bubble shape;

(3) obtain convergence solutions for discretised governing equations by the
SIMPLE algorithm for an estimated bubble shape;

(4) check the total normal stress. If it is not satisfied, modify the bubble
profile to reduce the imbalance in the total normal stress;

(5) generate a new grid and calculate the interface velocity by step (4). Then
calculate grid velocities at all nodes and update the Jacobian number by
using equation (23); and

(6) repeat steps (3)-(5) untill all equations and boundary conditions are
satisfied.

Validation of the code
Bubble shape
In order to validate the direct-predictor method, the shape of a bubble at Re ¼ 2
and We ¼ 12; Re ¼ 20 and We ¼ 15; Re ¼ 100 and We ¼ 6; and Re ¼ 200
and We ¼ 5 is simulated, respectively, by the steady method developed in this
paper. Results and comparisons with Ryskin and Leal’s (1984a-c) results are
shown in Figure 3, and it can be seen that the present results are in fair
agreement. On closer inspection, a very small difference in wake volume or
length behind the bubble between the two sets of results may be identified; this
could result from the fact that a grid of 40 £ 40 was used in Ryskin and Leal’s
simulation, which may not be sufficient to get a grid independent solution.

HFF
13,8

950



The grid independent studies have been done by Li and Yan (2002a,b). In those
work, three different grid arrangements such as 45 £ 45; 67 £ 67 and 91 £ 91
were applied for the calculations and the results with grid arrangement of
67 £ 67 was proved to be grid independent.

Rising velocity
The rising velocity of a gas bubble has been investigated experimentally for
many years. Due to the complex behaviour of a rising gas bubble, in particular,
a deformed bubble in a liquid, it is difficult to find a unifying analytical
expression. Clift et al. (1978) has summarised some reasonable formulations in
dealing with particle acceleration. Normally, for an unsteady motion of a
particle, it is necessary to introduce the particle density explicitly because this
can determine the particle inertia and the net gravity force. Thus, the rising
velocity of an arbitrary gas bubble can be expressed in a general form:

rg þ
rl

2

� �
Vb

duT
dt

¼ gðrl 2 rgÞVb 2 Fx 2 Fh; ð24Þ

where the subscript “g” and “l” denote gas and liquid, respectively,Vb being the
volume of the gas bubble. The second term on the left-hand side of the equation
is an added mass or virtual mass contribution. The first term on the right-hand
side of the equation stands for a buoyancy force, the second term is the drag
force in the direction of the rising bubble and the third term is called the Basset
history force, which is induced by the contribution of a past acceleration. Based
on the assumption made in the previous section, the gas density inside a bubble

Figure 3.
Comparison of bubble
shape and streamlines

between present results
and those of Ryskin and

Leal (1984a-c)

Temperature and
concentration

fields

951



can be ignored. The drag force is calculated by integrating all forces acting on
the interface in the x-direction. According to the suggestion by Clift et al. (1978)
and Takagi and Matsumoto (1996), the “historical” term in equation (24) is
negligible. As the rising velocity of the bubble is dependent on the
time-dependent drag force Fx, thus, equation (24) can be rewritten as:

rl

2
Vb

duT
dt

¼ grlVb 2 Fx ð25Þ

This equation is normalised by the definitions of dimensionless groups of CD,
Re, Mo and Eö; and the following equations:

�uT ¼
uT

UT
; ð26Þ

t ¼
t0UT

de
; ð27Þ

where �uT is dimensionless velocity, t is dimensionless time, and t 0 is realistic
time. Therefore, the dimensionless version of equation (25) is given as:

0:5
duT
dt

¼
Eo

3
2

Re2 Mo
1
2

2
Fxde

rlVbV
2
T

ð28Þ

Our predictions of rising velocity are compared in Figure 4 with the data from
Mei (1994) and Takagi and Matsumoto (1996). Good agreement is apparent.

Figure 4.
Comparison of the rising
velocity
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Numerical results and discussion
Evolution of bubble shape
Using the numerical method and procedures presented in this paper, the
unsteady deformation of a gas bubble rising in a quiescent liquid are predicted
and studied. Figure 5(a)-(d) shows the results of bubble shape evolution at

Figure 5.
Evolution of bubble

shape at (a) Re ¼ 2 and
We ¼ 20; (b) Re ¼ 20,
We ¼ 15; (c) Re ¼ 50,

We ¼ 8 and (d)
Re ¼ 100, We ¼ 6

(continued)
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Figure 5.
(continued)
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Figure 5.
(continued)
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different Reynolds and Weber numbers. It can be seen that the evolution of a
bubble shape at the initial stages is similar in all cases and the shape deforms
from spherical to oblate; however, the path of deformation occurs in different
ways at the intermediate and final stages depending on the Reynolds and
Weber numbers. Figure 5(a) shows the evolution of bubble shape at a low

Figure 5.
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Reynolds number and a high Weber number, such as at Re ¼ 2 and We ¼ 20:
Figure 5(b)-(d) shows the results of bubble shape evolution with increasing
Reynolds number, but decreasing Weber number. These reflect the results of
interactions of inertia, viscosity and surface tension forces; the inertia force
changes the bubble shape to oblate, while the surface tension force maintains
the bubble as spherical. In addition, it can be seen in Figure 5(a)-(d) that the
dimensionless time scales of the bubble deformation are dependent on
Reynolds number. At a high Reynolds number, the time scale for a bubble
reaching its terminal steady shape is longer.

It is indicated that the time scale of bubble deformation to reach its steady
terminal shape is dependent on the ratio of Reynolds number to Weber number,
an almost linear relationship of dimensionless time t versus the ratio of (Re/We)
can be drawn as shown in Figure 6.

Propagation of concentration and temperature fields
Figures 7 and 8 show the propagation of concentration and temperature fields
around a deformed bubble in water (at Schmidt number, Sc ¼ 500 and Prandtl
number, Pr ¼ 2). It is shown that the propagation of the concentration and the
temperature is mainly dependent on the evolution of the bubble deformation.
At a low Reynolds number ðRe ¼ 2Þ and a high Weber number ðWe ¼ 20Þ;
such as in Figures 7(a) and 8(a), the effect of convective heat and mass transfer
on the concentration and temperature fields is weaker than that of diffusion so
that the fields are uniform. At an initial deformation stage, the contours are
nearly in parallel with the interfacial outline. When the bubble becomes an
oblate with a flat bottom, the concentration wake and temperature wake begin
to form behind the bubble. When the shape of the bubble is dimpled with a
concave indentation, the volume of the wake becomes increasingly large so that
an area of high concentration and temperature is formed at the rear of the
bubble.

Figure 6.
Time scale for bubble’s
steady terminal shape

versus the ratio of
(Re/We)
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Figure 7.
Propagation of
concentration field
around a deformed
bubble at (a) Re ¼ 2,
We ¼ 20 and Sc ¼ 500;
(b) Re ¼ 50, We ¼ 8 and
Sc ¼ 500

(continued)
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Figure 7.
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Figure 8.
Propagation of
temperature field around
a deformed bubble at
(a) Re ¼ 2, We ¼ 20 and
Pr ¼ 2.0 and (b) Re ¼ 50,
We ¼ 8 and Pr ¼ 2

(continued)
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With Reynolds number increasing to 50 and Weber number decreasing to 8, as
shown in Figures 7(b) and 8(b), the convective transfer becomes stronger so
that the volume of the wake is bigger, flow separation appears at the rear of the
bubble; and this results in a striking change in the propagation of the
concentration and temperature wakes.

Conclusions
In this paper, a numerical procedure is proposed for calculating the evolution of
a deformed gas bubble rising in a quiescent hot liquid; on this basis, the
evolution of bubble shape and the propagation of the temperature and
concentration fields around the bubble are studied and simulated. For a

Figure 8.
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deformable gas bubble rising in water (at Sc ¼ 500 and Pr ¼ 2), the
propagation of temperature and concentration fields at different Reynolds and
Weber numbers is calculated and simulated. It is found that the bubble
evolution at an initial stage is similar in all cases, and the path of the bubble
deformation is from a spherical to an oblate; however, the deformation path is
different for all cases at an intermediate stage, and in particular, at the final
stages. Moreover, the time scale for a bubble to reach its steady terminal shape
is dependent on the ratio of the terminal Reynolds number to the terminal
Weber number, (Re/We); the t almost linearly increases with (Re/We). In
addition, it is found that the bubble deformation has a significant effect on the
propagation of concentration and temperature fields; and the flow separation
behind a deformed bubble has a great effect on the evolution of the
concentration and temperature wakes.
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